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Computationally efficient phase-field models with interface kinetics
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We present a phase-field model of solidification which allows efficient computations in the regime when
interface kinetic effects dominate over capillary effects. The asymptotic analysis required to relate the param-
eters in the phase field with those of the original sharp-interface model is straightforward, and the resultant
phase-field model can be used for a wide range of material parameters.
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Phase-field model techniques have become increasi
recognized as the tool of choice for solving moving fr
boundary~sharp-interface! problems and, in particular, so
lidification processes@1–4#. Following early work that re-
lated the phase-field models to the original sharp-interf
model in the limit of zero interface width@5#, Karma and
Rappel showed that calculations could be performed w
the interface width is of the order of the capillary leng
@6,7#, even scaling with the dendritic tip radius at low unde
cooling. This work provided a particular relation between t
parameters of the original sharp-interface model and
phase-field model, and has been the starting point for a
rate computations of solidification in the important regim
when capillary effects dominate interface kinetics@8#.

Recently, however, there has been a growing interes
the opposite regime where interface kinetics are domin
This interest is stimulated by experimental observation of
puzzling morphological transition of the solidification fro
of Ni at high undercooling@9–12#.

The purpose of this Rapid Communication is to presen
modification of the phase-field model of solidification so
to enable efficient computations in the regime when interf
kinetics are the dominant factor. The modification allows o
to use an interface thickness many times larger than the
illary length. The methodology for performing th
asymptotic analysis is different and much easier to perfo
systematically to high order than the asymptotic match
employed in all previous analyses, and is capable of be
used in other free boundary problems.

Sharp-interface model.The symmetric model for the so
lidification of a pure melt from the liquid~L! phase to the
solid phase~S! is defined by the equations

] tu5D¹2u, ~1!

]nuuS2]nuuL5V/D, ~2!

ui1d0k52B~V!. ~3!

Here u5(T2TM)c/L is the dimensionless temperature a
ui is its value at the solidification front, withT being the
temperature in the liquid or solid,TM being the melting tem-
perature of a planar interface,c being the specific heat, andL
being the latent heat of fusion per unit volume. The curvat
of the solidification front is given byk and the capillary
length isd0 . D is thermal diffusivity~assumed here to be th
same in both phases! and V is the normal velocity of the
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front. Equation~2! expresses heat conservation at the int
face, and Eq.~3! is a modified Gibbs-Thomson condition
which is a statement of local equilibrium at the interface w
the attachment kinetics included through the termB(V). Tra-
ditionally, a linear kinetic undercoolingB(V)5bV is used. It
should be stressed, however, that the linearity ofui with
respect to velocity is a purely phenomenological assumpt
and molecular dynamics simulations@13,14# suggest that
there are substantial deviations from it at large undercool
In this Rapid Communication we are interested in mater
with large dimensionless parameterb̃[bD/d0. This con-
stant is a measure of the importance of interface kinetics
a given material. It takes very different values for differe
materials, and for Ni it is estimated from molecular dyna
ics simulations to be as high as 90@15#.

The phase-field model.The phase-field equations can ge
erally be written in the form

t] tc5W2¹2c2 f c~c!2lugc~c!, ~4!

] tu5D¹2u1
1

2
] th~c!. ~5!

Here c represents the phase field,f (c) is a double well
potential,g(c) shifts the relative height of the two minim
making one of the phases metastable foruÞ0. Note that we
have used the subscript notation to denote differentiat
hencegc(c) means]g/]c. The sharp-interface boundary
recovered as the locus of points wherec50, and we are
interested in the behavior of the phase-field equations as
phase-field interface widthW and relaxation timet tend to-
wards 0. In order to solve the desired sharp-interface mo
we need to ascertain what phase-field parame
$t,W,l, f (c),g(c)% should be used given the values
$D,d0 ,b, or B(V)%.

Asymptotic analysis.The limit of small W is a singular
one becauseW multiplies a highest order derivative. All pre
vious works use asymptotic matching to deal with the sin
larity. Here we will demonstrate a simpler approach based
the fact that the equation foru is linear so that it can be
trivially solved in terms ofc. Following Karma and Rappel
the analysis we give here focuses on the coordinate per
dicular to the interfacer; the effect of the transverse dimen
sions is incorporated by curvature dependent corrections,
as in their work.

Requiring thatu is finite at r→6` and requiring that
c(r )→71 sufficiently fast one obtains
©2003 The American Physical Society01-1
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u~j!5u01
1

2
pe2(p1q)jE

2m`

j

e(p1q)hh„c~h!…dh ~6!

5u01
1

2
pS û1

1

p1qD , ~7!

where

q[kW, v[
Vt

W
!1, p[

VW

D
, j[r /W, ~8!

m[sgn(p1q), and the last line definesû. The dependence
on p1q expresses the singular nature of the problem w
respect to this parameter. Fromu(j) one can compute the
outer limit uout(r ) and thus obtain ui5uout(0)5u0
11/2p/(p1q).

Despite the singularity, if we are interested only in t
profile of u near the interface one can expand in powers op
andp1q and to first order obtain

u~j!5ui1
1

2
pE

2`

j

@h„c~h!…21#dh1O„p~p1q!….

~9!

Using this expression and substituting it back in the equa
for c we get an equation forc which can be solved using
regular perturbation theory. In this way we recover the st
dard asymptotic result of Karma and Rappel:

W~l!5l
do

a1
, t~l!5l2S bD

d0
1a2l D d0

2

a1
2D

, ~10!

wherea1 anda2 are constants depending onf (c) andg(c).
Notice also that sincec is monotonic one can compute th
distance from the interfacej from c and in this way write to
orderp

u~j!5ui1
1

2
pF1„c;$c~j!%…, ~11!

whereF1 is defined as the integral in Eq.~9!.
From Eq. ~10! it follows that with the functionsf (•),

g(•), andh(•) fixed, l is the only free parameter.
Computational complexity.We now examine how the

computation timetc for the phase-field model scales with th
free parameterl in a discretized calculation with adaptiv
mesh refinement and uniform grid elements ind dimensions.
Clearly, tc depends on the width of the phase-field bound
layerW̃, the space resolutionDx, and the time stepDt. The
inverse computation time scales as (Dt/t)(Dx/
W̃)(Dx/L)d21, whereLd21 is the order of the surface are
andt is the maximum time one wishes to evolve the syste
For a spatially explicit numerical schemeDt
< 1

2 t(Dx/W)2/l. The factor ofl is included to guarantee
accuracy in the presence of the termlugc . Collecting terms,
and usingW̃'W}ld0 andt}l2 we obtain
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21}ldS Dx

W D d

~12!

showing that the computation time is highly sensitive tol
and also depends on the spatial resolution required by
shape of the interface profile ofc: smoother profiles are
better.

While it would be computationally efficient to work with
largel, doing so would introduce higher order terms in t
curvaturek and velocityV into the Gibbs-Thomson condition
~3!. In principle, it might be possible to fine tuneg(c),
f (c), andh(c) to kill terms of orderp2, pq, v2, vq, etc.
However, the resultant expressions are very complicated
integrals involved cannot be done analytically, there
many terms to consider, and even if successful, this wo
most likely introduce delicate fine structure into the pha
field profile which would offset the computational benefits

How can we do better? Using Eq.~10! we see that we
require v5(b̃1a2l)p!1 which puts a very severe con
straint on p if b̃ is large. Computationally this would b
more important at large undercooling when a thin tempe
ture boundary layer forms around the solidification front, a
correspondinglyq,p so that the smallness ofp is the limit-
ing factor.~For example, at undercoolingD50.8 the theory
predictsq/p51/7 at a steady state dendrite tip.! Therefore, a
good objective is to modify the phase field in a way th
relaxes the constraint onv.

A step in that direction was made by Bragardet al. @15#,
who replacedlu by H(lu) in Eq. ~4!. H(•) is computed
numerically by solving the following nonlinear eigenvalu
problem with appropriate boundary conditions onc:

d2c

dx2
2 f c~c!1v

dc

dx
2H~v !gc~c!50. ~13!

With H(•) chosen in this way the nonlinearities appearing
the standard phase-field model at largev are canceled by the
nonlinearities inH(•). To relate the parameters they use

d05
W

l
, b5

t

lW
. ~14!

However, this relationship is valid only in the limit of van
ishing p, i.e., whenu is approximately constant across th
diffuse interface—a result analogous to that of Caginalp
the standard phase field. Correspondingly, in Ref.@15# a
value ofp close to 0.01 is used in computations.

Sincev1q is no longer a small parameter it is analy
cally more involved to derive corrections for finitep. To
compute the linear part it is enough to consider smallv and
the result is

t5lWS b1a2

W

D D , ~15!

which is the analog of Karma and Rappel’s formula.
Replacing Eq.~14! by Eq.~15! allows much larger values

of p to be used and is a straightforward way to make be
1-2
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use of the model proposed in Ref.@15#. Numerically we ob-
served that forgc5(12c2)2, the form used in Ref.@15#, the
nonlinearities ink andV are weak even for values ofv of the
order of 20. However, the Bragardet al. phase-field model,
even with the improved asymptotics~15! that we derived,
still does not provide the desired degree of computatio
improvement because the phase-field profile develops a
length scale of orderW/H(v) which needs to be resolve
numerically in order to avoid artifacts. In addition,H in-
creases very rapidly withv.

New class of models.We propose to replacet by tR(c) in
such a way so that the effective equation forc becomes

t] tc5W2¹2c2 f c~c!2luiWu“cu. ~16!

What are the advantages of doing this? The asympt
analysis is greatly simplified because the equation forc can
be analyzed separately from that foru. The solution forc is
simply c(j)5c0(j), wherec0(j) is the solution of]j

2c0

2 f c(c0)50, and the relation between the parameters
simply given by Eq.~14!.

Now we can rewrite Eq.~16! as

t] tc5W2¹2c2 f c2luWu“cu2l
p

2
F1~c!Wu“cu

~17!

with the only problem being the presence ofp in the evolu-
tion equation. The final trick is to expressp in terms of] tc:

p5
W

D
V52

W

D

] tc

]xc
5

W

D

] tc

u“cu
. ~18!

The equation forc becomes

tR~c!] tc5W2¹2c2 f c~c!2luWu“cu, ~19!

where

tR5t2
1

2
l

W2

D
F1~c!. ~20!

For f (c)5 1
4 (12c2)2 and h(c)5c we have F1(c)

5A2ln@(c11)/2#. It follows that tR>t which means that
the model is well behaved. The expression fortR can be
compared with Karma and Rappel’s formula which can
rewritten in the formt85t1a2lW2/D. a2 is approximately
the value of21/2F1(0). As it standstR(21)5` and points
with c521 cannot evolve, so some cutoff nearc521
should be introduced. Experiments show that results are
sensitive to the exact form of the cutoff.

The restriction of orderp accuracy comes from expandin
u(j) near the interface. It is possible to go to higher orders
p or simply use the full expression~6!. This would result in
an implicit equation for] tc,

t] tc5W2¹2c2 f c2luWu¹cu2
lW2

2D
] tcû~c,p1q!.

~21!
06060
al
w

ic

is

e

n-

n

The functionû can be tabulated in advance and Eq.~21! can
be solved iteratively at each time step.

Different approximations to Eq.~21! lead to different
schemes. For example, if we consider the next order term
Eq. ~9! 1

2 p(p1q)F2„c;$c(j)%… we end up with a quadratic
equation for] tc. The model includingp2 corrections is

tR5t2
lW2

2D
@F1~c!1qF2~c!#,

tR~] tc!05W2¹2c2 f c~c!2lWuu“cu,

a5~] tc!0

1

tR

lW4

2D2

F2~c!

gc~c!
,

] tc5~] tc!0

12A124a

2a
5~] tc!0~11a12a21••• !.

~22!

In the evolution equation q5Wk5W“•n with n
5“c/u“cu.

Another application of the technique is to correct f
terms of orderpq at small undercooling whenp!q. In this
regime terms of orderpq are not negligible compared t
terms of orderp. To achieve this it is enough to use (] tc)0
from above without correcting it.

The phase-field model can be generalized to handle a
trary interface kineticsui52d0k2B(V) at orderp and ar-
bitrary v. The resultant phase-field model equation is

tR~c,u!] tc5W2@¹2c2k~“c•n!#2 f c~c!

2B 21
„l~u1d0k!…Wu“cu, ~23!

tR~c,u!5t2
lW2

2D
F1~c!B 218„l~u1d0k!…. ~24!

The above recipe for improving phase-field models can
used also in cases when thec profile changes withV andk.
For example, it can be applied to the model of Bragardet al.
by effectively replacingu with ui yielding

tR~c,u!] tc5W2¹2c2 f c~c!2H~2lu!gc~c!, ~25!

with

tR5t1
lW

2D
H8~2lu!F̃1„c,H~2lu!…

gc~c!

u“cu
. ~26!

In this case the expression fortR is more complicated be
causec changes withv. The functionsH(v) and cv(j)
which solve Eq.~13! and F1 can be precomputed numer
cally leading to a very efficient numerical scheme.

Anisotropy.To include anisotropy we need only to repla
W with W(n), t with t(n), and in three dimensions,W2¹2c
with 2(d/dc)*dVW(n)2(“c)2 to obtain the Gibbs-
Thomson condition

ui52
1

l (
i 51,2

@W~n!1]u i

2 W~n!#
1

Ri
2

t~n!

lW~n!
V, ~27!
1-3
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whereu1 andu2 are the angles between the normal and
local principle directions on the interface, andR1

21 and
R2

21—the principle curvatures.
Numerical Experiments.We now compare the perfor

mance of different phase-field models in one-dimensio
simulations. The benchmark problem solved isu(t50,x)5
2D for xP(2`,`) with the solid-liquid interface initially
at x50. The interface velocityV(t) is compared to that for
the sharp-interface model obtained via direct numerical in
gration.

The models compared are identified as follows. ST
standard phase-field model~4!; BR—Bragardet al. model
with asymptotic relation~14!; BR1—the above model with
the improved asymptotic relation~15!; tR—the new model
~19!; tR1p2—the new model withp2 corrections~22!; tR
BR—the improved version of BR given in Eq.~25!. We used
h(c)5c andgc5(12c2)2.

As an example, we computed the velocity of the fro
after t53.53104d0

2/D for b̃510, D51.2 andl515. The
exact result isVd0 /D50.021. The results for models ST
BR, andtR BR were 0.012, 0.044, and 0.020, respective
showing that the previously existing models are inadequ
in this regime.

Figure 1 compares the systematic deviations of vari
phase-field models from the sharp-interface solution a
function ofl. One clearly sees that BR model leads to err
linear inl. For BR1 unintended nonlinearities in the Gibb
Thomson condition quickly increase the error withl. In con-
trast tR and tR1p2 models yield approximately the sam
velocity for the entire range ofl considered. Using the val
ues for Ni cited in Ref.@15#, D51025 m2/sec andd0
55.56310210, the choiceD51.2 corresponds to a stead
state velocityV5(D21)D/(b̃d0)540 m/sec which is ap-
proximately where the experimentally observed morpholo
cal transition occurs.

To match the accuracy oftR model withl530 we need
to take aboutl55 in BR ~measuring deviations from th
limiting phase-field value!. In three dimensions, this leads
et

oc

n
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about (30/5)3'200 times increase in computational speed
compared to the simulations in Ref.@15#. If we use the
Bragard et al. model with our improved asymptotics, th
new tR(c) models will be about 33527 times faster. The
above figures are just for illustration, the precise compu
tional gains will depend on the desired accuracy and
regime of interest.

In conclusion, the models described here are the first~to
the best of our knowledge! that can systematically handl
interface kinetics dominated growth in and beyond the th
interface limit enabling huge gains in computational ef
ciency.
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FIG. 1. Interface velocity from different phase-field models a

function of l. b̃590, D51.2. At t583106d0
2/D. Dx50.5W

50.5ld0.
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