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We present a phase-field model of solidification which allows efficient computations in the regime when
interface kinetic effects dominate over capillary effects. The asymptotic analysis required to relate the param-
eters in the phase field with those of the original sharp-interface model is straightforward, and the resultant
phase-field model can be used for a wide range of material parameters.
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Phase-field model techniques have become increasinglyont. Equation(2) expresses heat conservation at the inter-
recognized as the tool of choice for solving moving freeface, and Eq(3) is a modified Gibbs-Thomson condition,
boundary(sharp-interface problems and, in particular, so- which is a statement of local equilibrium at the interface with
lidification processe$1-4]|. Following early work that re- the attachment kinetics included through the téW). Tra-
lated the phase-field models to the original sharp-interfacelitionally, a linear kinetic undercooling(V) = BV is used. It
model in the limit of zero interface widtf5], Karma and should be stressed, however, that the linearityupfwith
Rappel showed that calculations could be performed wherespect to velocity is a purely phenomenological assumption,
the interface width is of the order of the capillary length and molecular dynamics simulatio43,14 suggest that
[6,7], even scaling with the dendritic tip radius at low under-there are substantial deviations from it at large undercooling.
cooling. This work provided a particular relation between theln this Rapid Communication we are interested in materials

parameters of the original sharp-interface model and th@yith |arge dimensionless parametge=8D/d,. This con-
phase-field model, and has been the starting point for accutant is a measure of the importance of interface kinetics for
rate computations of solidification in the important regimea given material. It takes very different values for different
when capillary effects dominate interface kinetigs. _materials, and for Ni it is estimated from molecular dynam-

Recently, however, there has been a growing interest ifcs simulations to be as high as PI5].
the opposite regime where interface kinetics are dominant. The phase-field modérhe phase-field equations can gen-
This interest is stimulated by experimental observation of theyally be written in the form
puzzling morphological transition of the solidification front
of Ni at high undercooling9-12]. T p=W?V2y—Tf () —Nugy (), (4

The purpose of this Rapid Communication is to present a
modification of the phase-field model of solidification so as
to enable efficient computations in the regime when interface du=DV?u+ 5 ah(¥). )
kinetics are the dominant factor. The modification allows one
to use an interface thickness many times larger than the captere  represents the phase fielti{y) is a double well
illary length. The methodology for performing the potential,g(¢) shifts the relative height of the two minima
asymptotic analysis is different and much easier to performinaking one of the phases metastableifer0. Note that we
systematically to high order than the asymptotic matchinthave used the subscript notation to denote differentiation:
emplqyed in all previous analyses, and is capable of beingenceg¢( ) meansdg/dy. The sharp-interface boundary is
used in other free boundary problems. recovered as the locus of points whefe=0, and we are
~ Sharp-interface modellhe symmetric model for the So- nterested in the behavior of the phase-field equations as the
lidification of a pure melt from the liquidL) phase to the phase-field interface widti and relaxation timer tend to-

solid phas€(S) is defined by the equations wards 0. In order to solve the desired sharp-interface model,
) we need to ascertain what phase-field parameters
du=DV*u, (D 17 W\, f(),9(4)} should be used given the values of
{D,dg,B, or B(V)}.
dnU|s— dpu = VID, 2 Asymptotic analysisThe limit of small W is a singular
one becaus® multiplies a highest order derivative. All pre-
u;+dok=—-B(V). (3)  vious works use asymptotic matching to deal with the singu-

larity. Here we will demonstrate a simpler approach based on
Hereu=(T—Ty)c/L is the dimensionless temperature andthe fact that the equation far is linear so that it can be
u; is its value at the solidification front, witd being the trivially solved in terms ofis. Following Karma and Rappel,
temperature in the liquid or solid,, being the melting tem- the analysis we give here focuses on the coordinate perpen-
perature of a planar interfacepeing the specific heat, ahd  dicular to the interface; the effect of the transverse dimen-
being the latent heat of fusion per unit volume. The curvaturesions is incorporated by curvature dependent corrections, just
of the solidification front is given by and the capillary as in their work.
length isdy. D is thermal diffusivity(assumed here to be the ~ Requiring thatu is finite atr— *e and requiring that
same in both phasgandV is the normal velocity of the (r)— 1 sufficiently fast one obtains
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1 ¢ Lol Ax)e
u(§)=uot zpe PTIE [ ePTDIn(y(y)dy  (6) NN (12)
e
1 1 showing that the computation time is highly sensitiveato
=Up+ 7P u+ m , (7) and also depends on the spatial resolution required by the

shape of the interface profile af: smoother profiles are
better.

While it would be computationally efficient to work with
Vr W large\, doing so would introduce higher order terms in the
q=kW, v=-—<1, p=—, ¢&=r/W, (8  curvaturekand velocityVinto the Gibbs-Thomson condition

W D (3). In principle, it might be possible to fine turg(y),

R f(y), andh(y) to kill terms of orderp?, pq, v?, vq, etc.
m=sgn({P-+q), and the last line definas. The dependence However, the resultant expressions are very complicated, the
on p+q expresses the singular nature of the problem withintegrals involved cannot be done analytically, there are
respect to this parameter. Fronfé) one can compute the many terms to consider, and even if successful, this would
outer limit uy,(r) and thus obtainu;=uy,(0)=ug most likely introduce delicate fine structure into the phase-
+1/2p/(p+q). field profile which would offset the computational benefits.

Despite the singularity, if we are interested only in the How can we do better? Using E¢LO) we see that we
profile of u near the interface one can expand in powerp of require v =(B+a,\)p<1 which puts a very severe con-

andp+q and to first order obtain straint onp if B is large. Computationally this would be
1 (e more important at large undercooling Whe_n a _thin tempera-
u(é)=u;+ Epf [h(y(7)—1]d7+O(p(p+0)). ture boundary layer forms around the solidification front, and
—o correspondinglyg<p so that the smallness gfis the limit-
C) ing factor.(For example, at undercooling=0.8 the theory
predictsq/p=1/7 at a steady state dendrite lipherefore, a
Using this expression and substituting it back in the equatior@ood objective is to modify the phase field in a way that
for ¢ we get an equation fog which can be solved using relaxes the constraint an
regular perturbation theory. In this way we recover the stan- A step in that direction was made by Bragatal. [15],
dard asymptotic result of Karma and Rappel: who replaced\u by H(\u) in Eq. (4). H(-) is computed
numerically by solving the following nonlinear eigenvalue

where

<

2

d D d roblem with appropriate boundary conditions #n
W()\):A—o, T()\)Z)\z B——I—az)\ 2_0' (10) p pprop Y L}
a do a;D - »
——f +v——H =0. 13
wherea; anda, are constants depending 6) andg(y). dx2 AP +o dx (v)gy(¥) (13

Notice also that since is monotonic one can compute the

distance from the interfacgfrom ¢ and in this way write to ~ With H(-) chosen in this way the nonlinearities appearing in

orderp the standard phase-field model at largare canceled by the
nonlinearities inH(-). To relate the parameters they use

1
u(é)=u+ 5 PFL(i{e(9)), (1D do=Y, p= T, (14

whereF, is defined as the integral in E¢P). i i . ) ) .
From Eq.(10) it follows that with the functionsf(.), However, this relationship is valid only in the limit of van-

g(-), andh(-) fixed,  is the only free parameter. is_hing P, i.e., whenu is approximately constant across the
Computational complexityWe now examine how the diffuse interface—a re_sult analogous to that o_f Caginalp for

computation time, for the phase-field model scales with the the standard phase f'e_ld' Corr_espondlngly_, in Rab] a

free parametei in a discretized calculation with adaptive valug ofp CIOS? t 0.01 is used in computatlon_s.. .

mesh refinement and uniform grid elementgidimensions. 5'”Cev+,q is no longer a small parameter 't, IS analyti-

Clearly, t. depends on the width of the phase-field boundaryF@lly more involved to derive corrections for finife To

layer . the space resolutiax, and the time stept. The compute the linear part it is enough to consider smadind

) ’ . S the result is

inverse computation time scales as At{t)(Ax/

W) (Ax/L)4" 1, whereLY! is the order of the surface area

andt is the maximum time one wishes to evolve the system. T=AW

For a spatially explicit numerical schemeAt

<2 m(Ax/W)?/\. The factor ofX is included to guarantee which is the analog of Karma and Rappel's formula.

accuracy |D the presence of the texmgw COIIeCt|ng terms, Rep'acing Eq(14) by Eq(15) allows much |arger values

and usingW~Wwx=\d, and 7<\? we obtain of p to be used and is a straightforward way to make better

W
B+ Ly (15
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use of the model proposed in RéL5]. Numerically we ob-  The functionu can be tabulated in advance and E2{) can
served that fog,,= (1— ¢?)?, the form used in Ref15], the  pe solved iteratively at each time step.

nonlinearities irk andV are weak even for values ofof the Different approximations to Eq(21) lead to different
order of 20. However, the Bragaet al. phase-field model, schemes. For example, if we consider the next order term in
even with the improved asymptoti¢45) that we derived, Eq. (9) $p(p+q)F,(¢;{¥(£)}) we end up with a quadratic
still does not provide the desired degree of computationagquation ford,s». The model includingp? corrections is

improvement because the phase-field profile develops a new W2
Iength.scale.of ordeW/H(v). whiqh needs to b.e. res_olved To=T— ——[F1()+qFa(4)],
numerically in order to avoid artifacts. In additioH, in- 2D
creases very rapidly with. P —W2V2y— f AWU VY
New class of model8Ve propose to replaceby mx(¢) in (%o Y= Tu¥) IV,
such a way so that the effective equation fobecomes () 1 AW Fy(9)
a=\o¥)o 5 T\
T 2
o= W2V 2y~ ()~ \UW| V ], (16) R 2D Gyl )
1-y1-4
What are the advantages of doing this? The asymptotic atl/lz(ﬁtl//)oTa:(é’tl//)o(l-i‘ a+2a’+---).

analysis is greatly simplified because the equatiorn/faan 22)
be analyzed separately from that forThe solution fory is

simply ¢(£) = o(£), where o) is the solution ofdZo  |n the evolution equation qg=Wk=WV-n with n
—f,(0)=0, and the relation between the parameters is:V(/,/|V,/,|_

simply given by Eq.(;4). Another application of the technique is to correct for
Now we can rewrite Eq(16) as terms of ordempq at small undercooling whep<g. In this
regime terms of ordepq are not negligible compared to
o= W2V 2y — fw—?\UVV|Vl/f|—)\BF1(l//)W|Vl/f| terms of order_p. To achieve_ thi_s it is enough to usé; ),
2 from above without correcting it.
(17) The phase-field model can be generalized to handle arbi-

trary interface kineticsl;= —dgok— B(V) at orderp and ar-
bitrary v. The resultant phase-field model equation is
w W W diyp

TR(Y,U) =W V2Y—K(V ¢-n)] = f ()
P=5V="D05u DIV (18 —BTIMu+dk)WI VY, (23)

with the only problem being the presencepin the evolu-
tion equation. The final trick is to exprepsn terms ofd,:

2

The equation fory becomes AW 1,
| ' ()= 7 S FL DBV (Ut k). (24

TR(P)IPp=W2V2y—f, () AUV Y|, (19
The above recipe for improving phase-field models can be

where used also in cases when thieprofile changes with/ andk.
1 w2 For example, it can be applied to the model of Bragetrdl.
TR=T— E)\FFIW)_ (20) by effectively replacingu with u; yielding

TR(,U)dp=WV2Y—f () —H(—Au)gy(¥), (29
For f(¢)=%(1—¢%? and h(y)=¢ we have F,(y)
=\2In[(¢+1)/2]. It follows that rr=r which means that With
the model is well behaved. The expression f@r can be
compared with Karma and Rappel's formula which can be 9y(#)
rewritten in the formr’ = 7+ a,\W?/D. a, is approximately [Vl
the value of—1/2F(0). As it standsrg(— 1)= and points
with =—1 cannot evolve, so some cutoff negr=—1 In this case the expression feg is more complicated be-
should be introduced. Experiments show that results are ircauseys changes withv. The functionsH(v) and #,(¢)
sensitive to the exact form of the cutoff. which solve Eq.(13) and F; can be precomputed numeri-

The restriction of ordep accuracy comes from expanding cally leading to a very efficient numerical scheme.

u(€) near the interface. It is possible to go to higher orders in  Anisotropy.To include anisotropy we need only to replace
p or simply use the full expressiof6). This would resultin W with W(n), 7 with 7(n), and in three dimension8y*V?y

AW -
TR™ T+ ﬁH (_)\U)Fl(l//',H(_)\u))

(26)

animplicit equation fora, i, with  —(8/8¢) fdVW(n)?(V)? to obtain the Gibbs-
Thomson condition
s AW?
o =WV, NuWV Y| - S5 dpu(y,p+q). _ IS e zwimrt -y o
21) ui= Xi=1,2[ (n)+d, (n)]ﬁi NG 27
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where #, and 6, are the angles between the normal and the x10°
local principle directions on the interface, arIRil'1 and
Rz_l—the principle curvatures.

Numerical ExperimentsWe now compare the perfor- 2.4
mance of different phase-field models in one-dimensional
simulations. The benchmark problem solvedu{g=0x) =
—A for xe (—%,°) with the solid-liquid interface initially Q '
atx=0. The interface velocity/(t) is compared to that for >
the sharp-interface model obtained via direct numerical inte—§ 2.2r
gration.

The models compared are identified as follows. ST— 5
standard phase-field modél); BR—Bragardet al. model
with asymptotic relatior{14); BR+—the above model with

2.3f

the improved asymptotic relatiof15); rr—the new model 2r

(19); 7r+ p?>—the new model withp? corrections(22); 75

BR—the improved version of BR given in ER5). We used 19 . s : . . )
h(y)=¢ andg,=(1— 4?2 0 5 10 )\15 20 25 30

As an exarg4plt29, we cgmputed the velocity of the front FIG. 1. Interface velocity from different phase-field models as a
after t=3.5x10°dy/D for =10, A=1.2 andA=15. The ¢, 0oy of \. B=90, A=1.2. At t=8x10°d%/D. Ax=0.5W
exact result isVdy/D=0.021. The results for models ST, _g g g,

BR, and g BR were 0.012, 0.044, and 0.020, respectively,

showing that the previously existing models are inadequate . . . .
in ﬂ\]’:lsl rgegime previously existing ! au about (30/5§~200 times increase in computational speed as

Figure 1 compares the systematic deviations of varioug)mpa(rfdt t? the dS||mu.Itaht|ons In RdjiLng. If we tu?.e thfh
phase-field models from the sharp-interface solution as ragardet al. model with our improved asymptolics, the

function of A. One clearly sees that BR model leads to errord €W 7r(1%) models will be about 3=27 times faster. The

linear in\. For BR+ unintended nonlinearities in the Gibbs- e}bove figures are just for iIIustration,. the precise computa-
Thomson condition quickly increase the error within con- tional gains will depend on the desired accuracy and the

trast rr and 7gr+ p?> models yield approximately the same regime of interest.

. . : . In conclusion, the models described here are the (ficst
velocity for the entire range of considered. Using the val- ’ .
ues for Ni cited in Ref.[15], D=10"° m¥sec andd, the best of our knowledgethat can systematically handle

—5.56<10" 10, the choiceA=1.2 corresponds to a steady interface kinetics dominated growth in and beyond the thin-

) ~ oo interface limit enabling huge gains in computational effi-
state velocityV=(A—1)D/(Bdy) =40 m/sec which is ap- ciency.

proximately where the experimentally observed morphologi-

cal transition occurs. We thank Jon Dantzig for useful discussions and his in-
To match the accuracy afz model withA =30 we need terest in this work. This work was supported in part by the

to take about=5 in BR (measuring deviations from the National Science Foundation through Grants Nos. NSF-
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